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About Me

J

Sang-Woo Jun

o Assistant Professor, UC Irvine
o Ph.D.(2018) @ MIT

Research Interests

o Systems architecture
o Accelerators

o NVM storage

o Applications!

* Graphs, Bioinformatics, Machine learning...

Some Nice Papers
o (ISCA, VLDB, FAST, FPGA, MICRO, ...)

Some Nice Media Coverage
o Engadget, The Next Platform, ...
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Why should we learn about
computer architecture?

As a software developer

As a hardware architect



Why should software engineers
learn about architecture?

1}
People who are really serious about softwar,
should make their own hardware.”

e
- Alan Kay
s

Image source: www.smartlinkin.com.tw/Article/4826 (from Steve Jobs’ 2007 iPhone introduction)



http://www.smartlinkin.com.tw/Article/4826

Computer architecture effects example 1

J Multiplying two 2048 x 2048 matrices
o 16 MiB, doesn’t fit in any cache

J Machine: Intel i5-7400 @ 3.00GHz

J Time to transpose B is also counted
A B

63.19 seconds

for (1=0 to N)
for (j=0 to N)
for (k=0 to N)
C[1][J] += A[1][k] * B[kI[J];

A BT

10.39 seconds
(6x performance!)



Computer architecture effects example 2

Latency, VC++ 2017 x64 (memory = 65536B)

J Binary search vs. branchless 192 [~
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o Architecture, assembly knowledge!
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Source: “Performance comparison: linear search vs binary search.” dirtyhandscoding.wordpress.com



Computer architecture effects example 3

( int result[P]; )
arallel workers processes 1/P-th of the data;

I/ the p-th worker records its partial count in result[p]

for(intp=0; p<P; ++p) matrix

pool.run( [&,p] {

result[p] = 0;

int chunkSize = DIM/P + 1,

int myStart = p * chunkSize;

int myEnd = min( myStart+chunkSize, DIM );

for( inti=myStart; i < myEnd; ++i)
for(intj=0; j < DIM; ++])

DIM

DIM

1% 2!=0)
++result[p]; } );
pool.joITTi // ' Wait for all tasks to complete

odds = 0; /I combine the results

for(intp=0;,p<P; ++p)
odds += result[p];

Speedup for Example 1

Speedup over 1-thread baseline

REALLY BAD scalability! Why?

Source: Scott Meyers, “CPU Caches and Why You care”

Faster than
1 core

Slower than
1 core



Computer architecture effects example 4

for (target in stream):
entities[target].string.append(char);

When entities.size < (1<<16): 1 GB/s

When entities.size > (1<<20): 200 MB/s

Why??



Why do we need computer architects?
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Now: The end of Moore’s law and
performance scaling

16nm Zynq RFSoC
55nm Radeon HD4870

40 Years of Processor Performance
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Running Into the Power Wall
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Crisis Averted With Manycores?
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Also, scaling size is becoming more difficult!

J Processor fabrication technology has always reduced in size

o As of 2023, transitioning from 5 nm to 3 nm
Q: Is sub-3nm even feasible?

Q: What does 3 nm even mean?

Image source: Intel



Forecast Not Good For Scaling...

Release Dates for Intel
Lead Generation Products
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Less transistors for processors, less bits for memory

David Brooks, “What’s the future of technology scaling?,” Computer Architecture Today



Year 2000
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Image source: WikiChip

Not going into details:

Only three players left?!

https://www.technologyreview.com/2021/10/27/1037118/
moores-law-computer-chips/



We can't keep doing what we used to

d Limited number of transistors, limited clock speed
o How to make the ABSOLUTE BEST of these resources?

d Timely example: Apple M1 Processor

- 8-core
o Outperforms everyone, low power! (per Apple) :cm1 i
o How? il

» “8-wide decoder” [...] “16 execution units (per core)” |
e “(Estimated) 630-deep out-of-order”

* “Unified memory architecture”

* Hardware/software optimized for each other

What do these mean?
Not just apple! (Amazon, Microsoft, EU, ...)

Image source: Apple



We can't keep doing what we used to

European Processor Accelerator (EPAC):

AWS Graviton 2: A4-Core RISC-V +
64-Core ARM Variable Precision Accelerator +
Amazon EC2 Throughput Per Dollar Stencil and Tensor Accelerator
Eme6g.l16xlarge (Graviton2) ® m6g.12xlarge (Graviton2)
e ®m6g.8xlarge (Graviton2) B m6g.4xlarge (Graviton2)
kﬁ ; mmb5a.16xlarge (EPYC1) m mba.4xlarge (EPYC1)

00028
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Image source: Anandtech, "Amazon's Arm-based Graviton2 Against AMD and Intel: Comparing Cloud Compute”
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The State of C
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No better time to be an architect!

“There are Turing Awards waiting to be picked up
if people would just work on these things.”
—David Patterson, 2018



And on that note...



Welcome to CS 250P!

J We will learn:
o How modern processors are designed to achieve high performance
o Why, under which restrictions

o Aim: less than half the time going over undergrad-level topics
o Aim: Even undergrad-level topics presented with real-world context

Have you taken undergraduate-level computer architecture before?

22 responses

o “RISC-V'’s register file has 32 slots. Why?”
“x86 has 8. Why? Is this better or worse?”

Captured 2023-10-02



Course mechanics

J Lectures: MW 3:30PM - 4:50PM@ ICS 174
J Discussions: Fri 3:00 - 3:50p @ ICS 174

o May not always have lectures, but myself or at least one TA will be there for
guestions, may sometimes swap with lectures

d Grading: Homework: 50%, midterm exam: 25%, final exam: 25%
(all grades curved).



What this class does and doesn’t do

J It doesn’t do :
o Bit-level control signal management = e

* (Not how modern processors are designed!) = e —
o Details of the Intel x86 architecture )J (
* Very complicated and cluttered with ’.,c' ;
backwards compatibility from the 70s L

e But will introduce parts of it!

] It does do

o Reason about why high-level decisions
were made

o Quantitatively analyze alternatives




Times have changed...

(1971) 2,250 transistors! (2020) +1 Billion transistors!
Intel 4004 Schematics drawn by Lajos Kintli and Fred Huettig Intel Core-i7 die (Source: Intel)
for the Intel 4004 50" anniversary project



Some important ideas In

computer architecture
J Pipelining

(J Caches and their design

J Branch prediction

d Virtual memory and privileges
J Superscalar

J Simultaneous multithreading
J Speculative execution

(J Out-of-Order Execution

J Vector operations

1 Accelerators

How far can we go in CS250P?




Course outline

d Part 1: The Hardware-Software Interface
o What is a ‘good’ processor?
o Assembly programming and conventions

d Part 2: Recap of digital design
o Combinational and sequential circuits
o How their restrictions influence processor design

d Part 3: Computer Architecture
o Simple and pipelined processors
o Out-of-order and explicitly parallel architectures
o Caches and the memory hierarchy

d Part 4: Computer Systems
o Operating systems, Virtual memory
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